import WimPyDD as WD import numpy as np import matplotlib.pyplot as pl a_pion_p,a_pion_n,a_eta_p,a_eta_n,b_p,b_n=0.2166300422469397, -0.21663004224694038, 0.07607523965672636, 0.07605541831688267, -0.41945356821526036, 0.013814848551653033 #constants of proportionality between the non-relativistic couplings a_pion, a_meson and b defined in Eq. (2.10) of 1707.06998 and the effective coupling of the relativistic Hamiltonian for the operator Q^(7)_3 defined in the same paper. Valid at leading order, calculated with directDM, arXiv:1708.02678 a_pion_0=a_pion_p+a_pion_n a_pion_1=a_pion_p-a_pion_n a_eta_0=a_eta_p+a_eta_n a_eta_1=a_eta_p-a_eta_n b_0=b_p+b_n b_1=b_p-b_n m_pion=134.9766*1e-3 # GeV m_eta=547.862*1e-3 # GeV c73_model=WD.eft_hamiltonian('c73',{10: lambda c73: c73*np.array([b_0,b_1]), (10,'pion'): lambda c73,q: c73*np.array([a_pion_0,a_pion_1])*q**2/(m_pion**2-q**2), (10,'eta'): lambda c73,q: c73*np.array([a_eta_0,a_eta_1])*q**2/(m_eta**2-q**2)}) #effective hamiltonian including meson-pole effect vmin,delta_eta0=WD.streamed_halo_function() mchi_vec=np.logspace(-1,3,100) mchi_vec,c73_squared=WD.mchi_vs_exclusion(WD.PICO60_2019,c73_model,vmin,delta_eta0,mchi_vec=mchi_vec) #returns two arrays of m_chi and lambda_tilde sixth c73_lambda_tilde=c73_squared**(-1/6) #to get lambda_tilde pl.clf() pl.plot(mchi_vec,c73_lambda_tilde,label='90% C.L.') pl.xlabel('$m_{\chi}$ (GeV)',fontsize=10) pl.ylabel('$\~\Lambda$ (GeV)',fontsize=10) pl.xscale('log') pl.yscale('log') pl.legend(title='$Q^{(7)}_3$',loc=4,fontsize=15,title_fontsize=15,frameon=False) pl.show()